PHIL 387, Assignment Schedule #2

A7: Read McCulloch 41-49 and Russell in GK 87-90, and respond to each of the following (use discretion about what to type):

1) As McCulloch says, Russell presents us with a “nightmarish” list of clauses which are supposed to reduce ordinary locutions to the “everything” quantifier – where these reductions are, in effect, pure Frege. It is tempting to skim this material because it is so very hard to read. But we should be able to follow. Thus in our notation, we might represent what Russell is up to with clauses on p. 88 as follows:

 a. C(everything) means “C(x) is always true”:
 - ‘everything is C’ is true iff ‘∀xCx’ is true -- iff the function C returns T for each argument of the domain.

 b. C(nothing) means ‘‘C(x) is false’ is always true’
 - ‘nothing is C’ is true iff ‘∀x¬Cx’ is true -- iff the function C returns F for each object of the domain, so that ¬C returns T for each object the domain, so that the quantifier’s output is T.

 c. C(something) means “It is false that ‘C(x) is false’ is always true”
 - ‘something is C’ is true iff ‘¬∀x¬Cx’ is true -- iff the function C returns T for some object of the domain, so that ¬C returns F for some object of the domain, so that the universal quantifier returns F, so that the outer negation returns T.

If you have trouble with this, work out the trees. Here’s the problem: See if you can do the same for his ‘C(a man)’, ‘C(all men)’ and ‘C(no men)’.

2) What is the Basic Problem and how or why is it a problem for Frege?

3) Based on reading (both sources) and lecture, see if you can say why ‘the G is H’ might be thought to be equivalent to ‘∃x(Gx & ∀y(Gy → y = x) & Hx)’. Extra credit: can you say why this is equivalent to ‘∃x(∀y(Gy ↔ y = x) & Hx)’? Again, if you have trouble with this, work out the trees.

A8: Read McCulloch 49-52 and Russell in GK 90-91 (there is a typo in GK; on p. 91, in the first paragraph, ‘But now consider “the King of England is Bald”’. By parity...’ should read, ‘But now consider “the King of France is bald”. By parity...’). Respond to each of the following:

1) How does Russell’s account of ‘the G is H’ solve the Basic Problem? Do you see this as introducing any sort of problem for the Commitment Claim? Explain.

2) Explicate the logical relations between (DQ), (NQ) and (ND). Do you think (ND) is right? Why?
3) At the top of p. 91, Russell suggests a sort of “parity” between, ‘The King of England is bald’ and ‘The King of France is bald’. (a) How might this be thought to “spread” application of the basic problem to descriptions that do denote objects, as well as to those that do not? (b) Do you find this reasoning persuasive? Explain.

A9: Read McCulloch 52-64 and Russell in GK 91-99. Though you should read it, don’t worry too much about the section of Russell’s article beginning at the bottom of p. 92 continuing through the first full paragraph on p. 94; the “inextricable tangle” may be Russell’s own! The rest is important. Respond to each of the following (you may have to think independently about how Russell’s theory works in order to see what he is up to):

1) The first puzzle on p. 92 of GK is precisely the puzzle McCulloch raises in §20. (a) See if you can use Russell’s example to develop the difficulty in the terms we have been using from McCulloch – that is, using LL with principles of the sort (A#) and (B). (b) How does Russell think his theory solves the problem?

2) The second puzzle on p. 92 of GK has as a premise that every declarative sentence is T or F. (a) How is this a problem for the Fregean approach? (b) How does Russell think his theory solves the problem?

3) Historically, the third puzzle on p. 92 of GK may have been the most influential of the three. The difficulty is one raised long ago by Plato’s contemporary Parmenedies, and worried about since then. After all that time, along came Russell with a seemingly complete solution! (i) What is the difficulty, and how does it arise in a Fregean context? That is, how is it connected to the Basic Problem? (ii) How does Russell think his theory solves the problem?