Assignment Schedule #1 (revised)

Background extra credit: Read SL Ch 6 as necessary; work any problems from E6.15, 6.18, 6.20 and/or from Phil 200 extra-credit problems. You are encouraged to use the computer. And it is fine to use Plus rules for 50 - 75 of the extra-credit problems. If you have done these problems before, they should be worked again for this assignment. To be effective, these should be worked alongside A1 - A4.

A1. HW: Read SL Ch 7 through 7.2.1; do E7.1

A2. HW: Read SL through 7.2.2; do E7.2a-e

Ex: Any remaining problems from E7.2, and E7.3

A3. HW: Read SL through 7.2.3; do the (v) clause from E7.4 and E7.6a-f

Ex: Any remaining problems from E7.4, 7.6, and E7.5

A4: HW: Read Priest, chapter 1 (excluding 1.11) and MNDP section 1.1. Do tableaux for Priest, 1.14 #1a-e. Then for any argument that is valid, demonstrate its validity in NCL (our regular natural derivation system with derived rules), and for any argument that is invalid recover a counterexample from your tableaux, and demonstrate invalidity using his notation, but in our standard style. Though the definitions are all the same as in his text, make use of their names and statements from MNDP.

Ex: Any additional problems from 1.14 #1 worked as above. Also try 1.14 #3. For this, just think about the cases a bit, and say what you think. Note that a couple strategies for defending classical logic are mentioned at the end of chapter one of SL. You should interact with those.

A5: HW: Read Priest, 2.1 - 2.3, and MNDP 2.1 (ignoring anything about systems other than K – and so restrictions on access, or the t and v alternatives). Work each of a, c, e, g, and n, p, r in Priest, 2.12 #2, with ‘|=k’ substituted for ‘|-’, and ‘/=k’ for ‘/-’. Work these in our standard semantic style. For the latter group, you will have to construct interpretations, which you may do by means of simple diagrams as in Priest.

Ex: Any of the remaining problems from Priest, 2.12 #2, in the same style.

A6: HW: Read MNDP 2.2 (still ignoring anything about systems other than K – and so AM, t and v rules). From Priest, 2.12 #2, use derivations in NK to demonstrate each of (a) - (k)
A7: HW: Finish Priest, chapter 2 (excluding 2.9). From Priest, 2.12 #2, use tableaux to demonstrate each of (a) - (e) and (l) – (p). For the latter, exhibit the models induced by the tableaux.

EX: Use tableaux to complete 2.12 #2.

A8: HW: Read Priest, 3.1, 3.2 and 3.5, and MNDP 2.1 (now in its entirety). Demonstrate results from Priest, 3.10 #3a,c #4 and #5 with the appropriate ‘‘‘ substituted for ‘‘‘. For #5, do a,b in Kρστ and c,d in Kτ.

EX: Any remaining problems from 3.10 #3, and revisit (l) – (v) from Priest, 2.12 #2. Which of these go valid in the stronger systems? If one goes valid, demonstrate its validity in the weakest logic that makes it valid. If one does not go valid, demonstrate its invalidity in Kρστ.

A9. HW: Read MNDP 2.2 (now in its entirety). Use derivations in the appropriate NKα to demonstrate each of the results in Priest, 3.10 #3 - #5 (for #5, you may use either NKρστ or NKτ).

EX: Demonstrate #6c and use the other set of rules for problems in #5.

A10. HW: Finish Priest, chapter 3 (excluding 3.6a,3.6b,3.7). Use tableaux to demonstrate each of the results in Priest, 3.10 #4 - #6 (again for #5 you may use either Kρστ or Kτ). For the few that are invalid, produce interpretations and semantic arguments to demonstrate their invalidity.

EX: Any of the problems in 3.10 #7,10,11 demonstrating your results by arguments of whatever type – semantic, natural derivation, or tableaux – that you find most convenient. To show that system X is a “proper extension” of Y, you want to find some result such that P ⊨ X Q but P ⊭ Y Q; for this, think about characteristic principles!

Midterm